PerkinElmer
check quantity

NexION 2000S ICP Mass Spectrometer

PerkinElmer’s NexION® 2000 is the most versatile ICP-MS on the market, featuring an array of unique technologies that combine to deliver the highest performance no matter what your analytical challenge. Discover the effortless versatility of an instrument that makes it easy to handle any sample matrix, any interference, and any particle size.

PerkinElmer received on April 11, 2018 the Application Award from LaborPraxis in the category Bio and Pharma Analysis for the NexION 2000 ICP-MS. We were awarded this prize during analytica 2018 in Munich, Germany, in acknowledgment of a new technique enabling users to quantify the amount of metal in an individual cell for the first time.

Part Number
Model Name
N8150044
NexION 2000B
more
N8150045
NexION 2000C
more
N8150046
NexION 2000P
more
N8150047
NexION 2000S
more
Buy Now

Please enter valid quantity

Please log in to add favorites.

NULL OR EMPTY CART

Overview

Ideal for laboratories testing semiconductors and fine chemicals, the NexION 2000S ICP-MS features:

  • A dedicated SMARTintro High Purity sample-introduction module minimizes contamination and delivers low background equivalent concentrations (BECs))
  • Built-in cold plasma capabilities which, combined with Reaction mode, deliver PPQ detection limits
  • Three quadrupoles, three gas channels, and three modes of operation combine to offer better interference removal, delivering better detection limits/improved data accuracy
  • The industry’s fastest data acquisition speed on the market (100,000 points/sec) to handle any particle size
  • A new solid-state RF generator with revolutionary LumiCoil technology – first ICP-MS RF coil that requires no maintenance or cooling
  • Triple Cone Interface with Quadrupole Ion Deflector, delivering no maintenance beyond the cones
  • Small footprint to minimize bench space
  • Syngistix software provides an intuitive interface that mirrors your workflow, with left-to-right, icon-based navigation that guides you through your analysis. Plus, it’s a cross-platform solution, easing the transition from technique to technique
The NexION 2000 ICP-MS – Triple Quad Power Meets Single Quad Versatility.

Specifications

21 CFR Part 11 Compatible Yes
Depth 69.0 cm
Height 75.0 cm
Model Name NexION 2000S
Portable No
Product Brand Name NexION
Warranty 1 Year
Weight 150.0 kg
Width 81.0 cm
Resources, Events & More
  • All

Application Brief

Arsenic Speciation Analysis in Rice Following Method GB 5009.11-2014 to Ensure Safety

Rice represents a dietary staple for over half of the world's population. However, in recent years, concerns have been raised over the presence of high levels of arsenic (As), where this carcinogenic metalloid can be accumulated at levels far exceeding ambient concentrations. Since China is the world's largest producer of rice, the Chinese government released a national standard method in 2014 for food safety – GB 5009.11– to aid the evaluation of As species in rice and rice products. In this document, HPLC-ICP-MS is identified as the preferred analytical technique.

In this study, five arsenic species were characterized in a commercial rice sample and certified reference material using a gradient anion-exchange method in accordance with GB 5009.11. The analysis was performed using a PerkinElmer NexSAR HPLC-ICP-MS speciation solution, consisting of a NexSAR inert HPLC coupled to a NexION® ICP-MS.

PDF 1 MB
PM10 and PM2.5 Air Pollution Monitoring and Source Apportionment in Asia Using the NexION ICP-MS

Concern about air pollution has been growing rapidly, with most of the focus on gaseous pollutants. Airborne particulates, especially small ones, are rapidly gaining attention due to their impact on human health, as smaller particles can be carried over long distances by wind and penetrate deep into the lungs, where contaminants can have direct interaction with lung tissue and the associated blood vessels. Airborne particulates are classified as PM10 for those with aerodynamic diameters less than 10 µm and PM2.5 for those with aerodynamic diameters less than 2.5 µm.

PM2.5 regulations have been implemented throughout the world, and in order to implement a regime to reduce the concentration of PM2.5, it is important to determine the origins of these particulates, hence the need to collect and analyze them.

ICP-MS is often the analytical instrument of choice for such applications due to its low detection limits and wide linear dynamic range. This work describes the collection, sample preparation and inorganic elemental analysis of atmospheric PM10 and PM2.5 using PerkinElmer’s NexION® ICP-MS.

PDF 1 MB

Application Note

A Single Cell-ICP-MS Method to Study the Treatment Efficiency of Algaecide for Toxic Algal Bloom Control

Toxic cyanobacterial blooms were reported worldwide in various aquatic systems, including freshwater rivers, lakes, reservoirs, and eutrophied coastal marine habitats. Cyanobacterial blooms might be caused by a combination of multiple factors, including eutrophication, solar radiation, temperature, current patterns and other associated factors. Their proliferation in aquatic environments can cause death or toxin accumulation in aquatic animals and then, indirectly or directly, affect human health. Microcystis aeruginosa (M. aeruginosa) bloom is the most common harmful algal bloom (HAB) and is widely studied in various fields.

Copper sulfate is an algaecide frequently used for controlling algae growth. The mechanism of copper (Cu)-based algaecide for algal bloom control is not well understood. The amount of Cu required to kill an individual algae cell and the morphology of the cell after being killed is still unknown. Quantification measurement of these phenomena is even more difficult due to the lack of appropriate methodology.

This work demonstrates that single cell (SC)-ICP-MS provides an effective method for the determination of copper algaecide at the cellular level, leveraging the NexION® ICP-MS with Syngistix Single Cell Application software module.

PDF 2 MB
Accurate Sizing and Counting of 10 nm Gold Nanoparticles with the NexION ICP-MS

In this work, we demonstrate that PerkinElmer's NexION® 2000 ICP-MS, with its unique RF generator and ion optics, coupled with the Syngistix™ Nano Application Software Module, can be used to accurately measure and characterize NP sizes of 10 nm and smaller, both alone and in a mixture of NPs of various sizes.

PDF 2 MB
Analysis of Cerium Dioxide Nanoparticles in Soil Using Single Particle ICP-MS

This work demonstrates a robust method using SP-ICP-MS technology to detect CeO2 NPs which were extracted from soil samples with tetrasodium pyrophosphate (TSPP). Over the past few decades, engineered nanoparticles (ENPs) have been increasingly used in many commercial products. As a result, more and more ENPs have been released into the environment, which raises concerns over their fate, toxicity and transport therein.

PDF 1 MB
Analysis of Drinking and Natural Waters with the NexION 2000 ICP-MS

This work has demonstrated the ability of the NexION 2000 ICP-MS to analyze both natural and drinking water samples in Standard (i.e. non-cell) mode, in accordance with U.S. EPA Method 200.8. Accuracy has been demonstrated through the analysis of several reference materials and spike recoveries, with stability of at least nine hours. Method detection limits allow for trace-level determinations, while the ability to selectively suppress user-defined isotopes also allows the measurement of analyte levels usually only possible by ICP-OES or Flame AA. The NexION 2000 provides a comprehensive solution to the challenge of U.S. EPA Method 200.8 and other drinking and natural water analytical requirements across the globe.

PDF 1 MB
Analysis of SiO2 Nanoparticles in Reaction Mode with Single Particle ICP-MS

With the increased use of nanoparticles (NPs) in various products and processes, the need to characterize them has also increased. Single Particle ICP-MS (SP-ICP-MS) was developed for rapid analysis of nanoparticles, measuring thousands of particles in less than a minute, while providing individual particle information on particle size, particle size distribution, particle concentration, dissolved concentration of the element, and agglomeration.

Silicon dioxide (SiO2) NPs are among the largest domestically produced nanomaterials in Japan after carbon black. In a previous study, we reported that the 100 nm SiO2 nanoparticle standard can be analyzed using SP-ICP-MS without interference removal, using Standard mode. However, if the interference can be removed in Reaction mode, it is expected that smaller SiO2 NPs will be accurately measured.

In this work, we demonstrate the ability of PerkinElmer’s NexION® ICP-MS Single Particle Analyzer to accurately measure 50 nm SiO2 nanoparticles by reducing interferences while maintaining analyte intensity, thanks to the combination of short dwell times and Reaction mode.

PDF 606 KB
Analysis of Single-Walled Carbon Nanotubes with SP-ICP-MS

Measuring the amount of metals in CNTs presents a challenge. High levels can be measured directly in the solid by several techniques, including XRF and TEM, while low-level analysis requires complete digestion of the sample prior to analysis by ICP-OES or ICP-MS.

PDF 555 KB
Analysis of Soils and Waters Following U.S. EPA Method 6020B using the NexION 2000 ICP-MS

Through the years, both industry and analytical instrumentation have advanced. With the development of new chemicals and processes, new pollutants may enter the environment. However, the capabilities of analytical instruments have also increased, allowing the measurement of ever lower levels of environmental contaminants, as well as new pollutants.

PDF 2 MB
Boron Isotope Ratio Analysis Using the NexION ICP-MS

Boron (B) is studied for its isotope ratio composition in a range of paleoproxy, geochemical, nuclear, medical, and archeological applications. ICP-MS is recognized as a powerful technique for boron isotope analysis. Quadrupole ICP-MS is versatile and not exclusively dedicated to isotope ratio measurements, therefore the appreciation of its isotope ratio capabilities can bring high-quality isotopic ratio analysis into the reach of laboratories with varied analysis needs.

This application note describes the analysis of boron isotope ratios using a NexION® ICP-MS, demonstrating the instrument’s capabilities to measure at the best possible level of precision.

PDF 3 MB
Characterization of TiO2 Nanoparticle Release from Fabrics By Single Particle ICP-MS

In the textile industry, the use of titanium dioxide (TiO2) nanoparticles (NPs) is increasing due to their ability to provide UV protection, increase the hydrophilic nature of fabrics, provide antibacterial characteristics, and reduce odors. This work demonstrates the ability of PerkinElmer's NexION® Single Particle ICP-MS with Syngistix Nano Application Software Module to both detect and measure TiO2 nanoparticles released from textiles.

PDF 516 KB
Compendium - Reliable Methods for Nutritional & Toxic Analysis of Breakfast Foods

Breakfast is an important meal in providing essential nutrients to keep your energy levels up throughout the day. How do we ensure the food and beverages we consume are healthy, nutritious and safe? Following is a collection of application notes highlighting solutions that will help you identify micronutrients in milk, cereal, juice and fresh and dried fruits as well as toxic metals in tea, dairy products and apple juice to ensure safety of your breakfast foods.

PDF 15 MB
Determination of Trace Elements in Eye Drops with the NexION ICP-MS

Eye drops are commonly used medications which are available both over-the-counter and as prescriptions in various forms. Because eye drops are classified as a parenteral medication and have relatively large daily doses, the inorganic components in eye drops must be present at low concentrations. As a result, ICP-MS is the most appropriate technique for the determination of trace elements in eye drops.

The International Conference on Harmonization Guideline for Elemental Impurities Q3D (ICH Q3D) has established maximum permitted daily exposure limits for elemental impurities in pharmaceutical products. This work discusses the sample preparation and analysis of Class 1, 2, and 3 elements in a variety of eye drops with the NexION ICP-MS, following the criteria defined in ICH Q3D. The developed methodology (both sample preparation and analytical) demonstrates both accuracy and stability.

PDF 475 KB
Digestion, Testing, and Validation of Heavy Metals in Cannabis

Owing to the toxicity of heavy metals, it is increasingly important to test cannabis flowers and other cannabis derivatives so that patient and consumer safety is maintained as the use of cannabis becomes more common. This need has translated into an increasing demand for testing cannabis flowers and other cannabis derivatives for toxins such as the heavy metals cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg). In this application note, we present data to illustrate the successful validation of the Titan MPS Microwave Sample Preparation System and the NexION® ICP-MS for the determination of heavy metals in cannabis flower according to the validation protocols set in USP General Chapter <233>, which are commonly used for evaluation of the levels of elemental impurities in samples.

PDF 1 MB
Extraction of Gold Nanoparticles from Fish Larvae and Soils

Gold nanoparticles (AuNPs) are widely used in industrial and medical applications. They are known to form naturally during the weathering of Au-bearing mineral deposits, as well as the transformation of gold nuggets and particles. In freshwater systems, they bioaccumulate in aquatic organisms, as shown on test fish species such as zebrafish and guppy.

Several techniques are available to determine gold concentrations in samples – however, few methods have been developed to characterize the size fractions of nanoparticulate gold in complex organic materials. This work is a feasibility study to measure AuNPs in complex organic matrices using Single Particle ICP-MS, as may be applied to environmental monitoring or exploration, demonstrating the ability of PerkinElmer’s NexION® ICP-MS Single Particle Analyzer to reliably detect and characterize nanoparticles in soil and aquatic samples.

PDF 1 MB
Monitoring the Fate of Silver Nanoparticles in Seawater Using Single Particle ICP-MS

Single Particle (SP) ICP-MS is an analytical technique that has demonstrated tremendous potential for the measurement and characterization of metal-containing nanoparticles (NPs) in a wide range of sample types, including environmental. One of the most challenging matrices is seawater due to its high salt content, which causes severe difficulties when analyzed for NPs due to matrix suppression and cone clogging.

This work demonstrates the ability of the NexION® ICP-MS, coupled to the dedicated Syngistix Nano Application software module, to measure silver (Ag) nanoparticles in seawater and track their transformations over time.

PDF 1 MB
Multi-Elemental Analysis of Soils Using the NexION ICP-MS

The elemental analysis of soils is of vital importance not only for agriculture, but also from an environmental perspective. Toxic metals enter soil primarily through pollution and can be taken up directly by humans in various manners, potentially causing acute or chronically toxic responses. Therefore, the identification of pollutants and determination of the level of toxic elements present in the soil are important aspects to be considered.

This work demonstrates the ability of the NexION® ICP-MS to easily analyze 21 elements in soil over an extended period of time with outstanding accuracy and stability, delivering a complete solution to addressing the challenges in soil analysis.

PDF 1 MB
New Research Evaluating Cisplatin Uptake in Ovarian Cancer Cells by Single Cell ICP-MS

Cisplatin, carboplatin, and oxaliplatin are the most widely used of platinum-based cancer chemotherapy drugs in the Western world. Cisplatin's effectiveness is due to its ability to bind to the DNA, resulting in DNA-platinum (Pt) adducts, which bend the DNA. The cells must then repair the DNA damage, otherwise DNA replication is blocked resulting in cell death. Many cancers are initially sensitive to platinum-based treatment, but patients frequently relapse with tumors displaying resistance to further cisplatin therapy.

PDF 2 MB
NexION 2000: A Perfect Tool for the Determination of Trace Elements in Blood and Serum

This work demonstrates the ability of PerkinElmer's NexION 2000 ICP-MS to perform accurate, stable analyses of blood and serum samples, leveraging the benefits of the Universal Cell and the ability to use three cell gases in a single method.

PDF 931 KB
Quantification of Nanoparticle Uptake into Cancer Cells using Single Cell ICP-MS

Nanoparticles (NPs) have been of significant interest over the last two decades as they offer attractive benefits for drug delivery to overcome limitations in conventional chemotherapy. Nanoparticles can be engineered to carry both drugs and imaging probes to simultaneously detect and treat cancer. They may also be designed to specifically target diseased tissues and cells in the body. A number of nanoparticlebased cancer therapeutics have been approved for clinical use and/or are currently under development.

PDF 939 KB
Speciation of Hexavalent Chromium in Children's Toys According to EN 71-3 Category II with the NexSAR HPLC-ICP-MS

Testing for harmful metal(loid)s that may be included in raw materials, processes, paints and additives used in the manufacturing processes of children's toys has been mandated by the regulation EN 71-3. This regulation recommends specific testing methods and maximum allowable concentrations of leachable metals and metalloids such as Al, As, B, Ba, Cd, Co, Cr (III), Cr (VI), Cu, Hg, Mn, Ni, Pb, Sb, Se, Sn, organotin, Sr and Zn in parts of toys, with the exclusion of general packaging materials.

This work shows a method for the measurement of hexavalent chromium in different toy material categories in accordance with method EN 71-3 Category II, leveraging the unique combination and capabilities of the NexSAR Inert HPLC coupled to the robust NexION® ICP-MS.

PDF 918 KB
Testing and Validation of Various Antacids for Elemental Impurities using the NexION 2000 ICP-MS

The United States Pharmacopeia (USP) has announced that its new standards for elemental impurities in drug products has been implemented since January 1, 2018. General Chapters <232> and <2232> specify the list of elements and their permissible daily exposure (PDE) limits based on the route of administration.

PDF 576 KB
Transport of Nanoparticles from Coated Surfaces through Physical Contact

This work investigated the transfer of Ag and CuO nanoparticles from consumer products via simulated dermal contact by using textile wipes as a surrogate using PerkinElmer’s NexION® ICP-MS single particle analyzer with the unique Syngistix Nano Application software module for data collection and analysis.

PDF 1 MB

Brochure

Cannabis Testing Solutions Brochure

Whether your lab is well established or just starting up, having a single-source partner who can offer turnkey solutions that meet the current regulations is essential to a successful business. For years, we’ve worked with government and contract cannabis laboratories to develop industry-leading methods, technology, and exceptional return on investment. We help drive analytical standards and commit to ensuring your laboratory has maximum uptime. Learn about our various testing methods and applications for cannabis analyses. Let us work with you to build an efficient workflow, so you can focus on growing your business and brand.

PDF 9 MB
Comprehensive and Compliant Solutions for Glass Analysis

It’s clear, glass has a variety of uses, from practical to technological to decorative. In particular, float glass is widely used in architecture, automotive, transportation, photovoltaic, and solar industries.

For glass testing labs around the world, we offer highly accurate and tailored solutions including instrumentation, accessories, software, and services, to ensure you get the most out of your analysis. Focused and flexible, our technology enables glass manufacturers to determine efficient energy storage and test raw materials for the required properties. We provide industry-trusted solutions that align with the latest glass regulations (EN, ISO, and CIE), improving the flow and productivity of your lab. Download our Interactive Brochure to learn more.

PDF 3 MB
Grain Testing Solutions Brochure

The grain industry is very complex. It’s global, diverse, and can also present analytical challenges. Today’s grain users demand more when it comes to quality, safety, and uniformity. In addition, they seek diverse products with unique characteristics.

PerkinElmer is equipped to help the grain industry in its quest to feed the world – nutritiously and economically. Our testing and analysis solutions encompass the three primary areas required for complete knowledge of grains and their derivatives – composition, functionality, and safety.

PDF 6 MB
Meat and Seafood Testing Solutions

Food testing labs like yours are constantly challenged with accurately analyzing samples quickly and efficiently - all while striving to reduce costs due to market forces. Your commitment to ensuring meat and seafood are safe for consumption, as demand increases, is an uphill battle.

Our commitment to you: to provide a range of solutions across multiple technologies, products, and services that meets or exceeds the testing needs of food processors. Our solutions offer more efficiency and increased accuracy and sensitivity for better yields in real time with minimal training.

From instrumentation and software to consumables and reagents to service and support, we are dedicated to providing you with end-to-end solutions that ease your everyday challenges of automation, throughput, service, and time to results.

PDF 6 MB
NexION 2000 ICP Mass Spectrometer

Unrivaled ppq detection limits. Unparalleled usability. Finally analysts can have the best of both worlds with the NexION® 2000 ICP-MS, featuring an array of unique technologies that combine to deliver the highest performance no matter what your analytical challenge. Discover the effortless versatility of an instrument that makes it easy to handle:

  • Any sample matrix
  • Any interference
  • Any particle size

Learn more about the benefits of the groundbreaking NexION 2000 ICP-MS - download the brochure.

PDF 1 MB
Refinery and Natural Gas Analysis

Oil refineries and natural gas producers around the world require their lab operations to perform large numbers of analyses before their products are used in industries and by consumers. Detection of even the slightest impurities, accurate process control and hydrocarbon distribution analysis is critical to the success of these operations.That’s how PerkinElmer can help. As a global scientific leader and solutions provider to refining and natural gas labs, PerkinElmer's proven technology and experience meets the ever-changing needs of the oil and gas industry. PerkinElmer is committed to the success of your oil and gas sample analysis by providing the instrumentation, software, consumables, and services you need for fast, easy and precise testing. The result: better control of your operations and improved product quality.

PDF 5 MB
USP <232>/<233> & ICH Q3D Capabilities Brochure

The International Conference on Harmonization Guideline for Elemental Impurities Q3D (ICH Q3D) has established maximum permitted daily exposure limits for elemental impurities in pharmaceutical products. In combination with the U.S. Pharmacopeia’s (USP) Chapters <232> and <233> on elemental impurities, they redefined how the pharmaceutical and related supply-chain industries will measure, document, and comply with strict new standards to limit the presence of elemental impurities in drug products.

PerkinElmer provides the tools and processes you need to take control of impurities testing for both drug substances and drug products, providing proven, reliable technology for the identification and quantification of elemental impurities and the accurate measurement of residual solvents in accordance with strict regulatory guidelines.

Download this brochure to learn more.

PDF 3 MB

Catalog

Atomic Spectroscopy 2018-2019 Consumables & Supplies Catalog

With instruments that are the industry standard worldwide, PerkinElmer accessories, consumables, methods and application support meet the most demanding requirements and are the preferred choice in thousands of laboratories globally.

PDF 8 MB

Flyer

S20 Series Autosamplers

The S20 series is the next generation of high-performance, robust, and agile autosamplers designed specifically for PerkinElmer’s spectroscopy platforms - atomic and molecular. The series is comprised of two autosamplers: the S23 with three racks and the S25 with five racks. They are designed to meet the needs of all types of laboratories requiring:

  • Capacity - up to 270 samples for the S23 and up to 450 samples for the S25 allowing long, unattended runs
  • Speed - intelligent acceleration and deceleration speed in three axes
  • Ease of use - full control through various software platforms: Syngistix (for AA, ICP-OES and ICP-MS), UVWinLab and SpectrumFL
  • PDF 1 MB

    Guide

    Atomic Spectroscopy, A Guide to Selecting the Appropriate Technique and System

    This guide provides a basic overview of the most commonly used atomic spectroscopy techniques and provides the information necessary to help you select the one that best suits your specific needs and applications.

    PDF 1 MB
    NexION 1000/2000 ICP-MS Preparing Your Laboratory

    PerkinElmer ICP-MS instruments are complete systems with the exception of the following items which must be provided by the customer: electrical power, exhaust vents, argon gas supplies with approved regulator, cell gas supply with approved regulators

    PDF 1 MB
    NexION 1000/2000/5000 ICP-MS Consumables & Supplies Guide

    Look to PerkinElmer for all of your consumables and supplies for your NexION 1000, 2000, or 5000 ICP-MS system.

    PDF 3 MB

    Product Note

    High Throughput System for ICP-MS and ICP-OES Product Note

    Our High Throughput System (HTS) is a uniquely designed modular sample introduction that integrates with the NexION® series of ICP-MS and the Avio® series of ICP-OES to dramatically reduce sample-to-sample time, thereby improving sample throughput while maintaining operation simplicity. The HTS maximizes productivity by significantly reducing the time required for the sample uptake, stabilization, and washout.

    This valve-driven system is fully integrated with the Syngistix platform, eliminating the need for third-party software. Using a metal-free fluid path, the system quickly delivers the sample to the plasma, providing excellent results. With simple programming and workflow, the NexION ICP-MS and Avio ICP-OES with HTS simplifies method development for high-throughput analyses, allowing you to dramatically increase the number of samples you can analyze per day.

    PDF 1 MB
    Syngistix Atomic Spectroscopy Enhanced Security Software Product Note

    PerkinElmer’s Syngistix Enhanced Security software for AA, ICP and ICP-MS meets the special needs of highly regulated labs such as those that must comply with the U.S. FDA’s 21 CFR Part 11 regulations.

    PDF 1 MB

    Regulatory Compliance Certification

    NexION 1000/2000 Product Certificate

    Product Certificate for the NexION 1000/2000

    PDF 44 KB

    Technical Note

    Advantages of a Novel Plasma Generator for the NexION 1000/2000/5000 ICP-MS Systems

    Unlike other ICP-MS systems on the market that utilize conventional 40-MHz or 27-MHz commercially available generators which are typically customized and modified to work with ICP-MS instruments, the NexION® 1000/2000/5000 ICP-MS systems feature a 34-MHz frequency free-running RF generator, which was developed specifically for applications using ICP-MS systems. This state-of-the-art RF generator offers a trouble-free user experience, featuring adjustable power with 1 watt increments from 400 to 1600 watts. The accurate impedance matching of this system allows the plasma to quickly adjust to changing sample matrices, ensuring that sensitivity is maintained.

    Learn more about the novel 34-MHz RF generator of the NexION 1000/2000/5000 ICP-MS - download this technical note.

    PDF 986 KB

    White Paper

    The Determination of Metals in Non-Medical Face Masks

    With the onset of the COVID-19 pandemic, the use of face masks by the general public has become a critical personal protective measure to minimize person-to-person transmission. While health care workers use medical or surgical masks, the general population uses non-medical, otherwise known as hygienic, face masks to greatly reduce the transmission of SARS-CoV-2 by capturing droplets and aerosols from those infected with the virus.

    In response to the increased demand for both the number and variety of non-medical face masks, many companies are now producing them to meet the public’s need, and with this great variety, the quality and the safety of the face masks must be assessed. This work describes the considerations surrounding metal analysis in hygienic face masks used to prevent the spread of COVID-19.

    PDF 683 KB