PerkinElmer
check quantity

IVIS Lumina XRMS In Vivo Imaging System

Industry leading Fluorescence, Bioluminescence and X-Ray Imaging - All-In-One benchtop instrument! The IVIS® Lumina XRMS (x-ray multi-species optical imaging system) adds to the versatility of the IVIS Lumina XR by offering the flexibility to image large animals up to 500 grams with precise optical and X-Ray overlay.

Part Number CLS136340
Buy Now

Please enter valid quantity

Please login to add favorites

NULL OR EMPTY CART

You successfully added item(s) to your cart

For research use only. Not for use in diagnostic procedures.

Detail Information

The Lumina XRMS includes state of the art spectral unmixing for sensitive multispectral imaging to monitor multiple biological events in the same animal. Use our Living Image® software to automate all the controls and settings required for seamless image acquisition and processing. Typical X-ray image acquisitions take only 10 seconds and can be overlaid with both optical and photographic images.

Superior Optical Imaging with Spectral Unmixing

The IVIS Lumina XRMS Series III is capable of imaging all common fluorescent and bioluminescent reporters or dyes. The system is equipped with up to 21 filter sets to image reporters that emit from green to near-infrared. High resolution, sharp cut-off filters are simply interchangeable to achieve the highest performance, sensitivity and spectral unmixing. The Lumina XRMS imaging system also accommodates Petri dishes or micro-titer plates for in vitro imaging.

The system can incorporate premium animal handling features such as a heated stage, gas anesthesia connections and a syringe injection system for simultaneous compound administration. Living Image software yields high-quality, reproducible, quantitative results incorporating instrument calibration, background subtraction and the image algorithms. Simple user guided spectral unmixing allows detection and separation of multiple reporters, and Living Image provides the precise overlay to see your optical reporters together with anatomical surface or X-ray features.

Features and Benefits:

  • Multispecies optical and X-ray imaging
  • Image mice, rats and other large animals
  • High resolution, low dose digital X-Ray
  • Exquisite sensitivity in bioluminescence
  • Compute Pure Spectrum (CPS) spectral unmixing for ultimate fluorescence sensitivity
  • Full fluorescence tunability through the NIR Spectrum

Specifications

Height 104.0 cm
Imaging Modality Optical Imaging
Length 71.0 cm
Optical Imaging Classification Bioluminescence imaging, Fluorescence Imaging
Portable No
Product Brand Name IVIS
Width 48.0 cm
Resources, Events & More
  • All

Application Note

Cerenkov Imaging of Radioisotopes in IVIS systems

Cerenkov Emission from radioisotopes in tissue,Optical imaging detects photons in the visible range of the electromagnetic,spectrum. PET and SPECT imaging instruments are sensitive to photons in the much,higher energy range of x-rays and gamma rays. While the PET and SPECT probes,which can generate Cerenkov light in tissue will continue to produce the relevant,gamma- and x-rays, visible photons will be produced from the Cerenkov emission,which the IVIS® will detect.,In beta decay emitters such as PET probes and isotopes such as 90Y, 177Lu, 131I and 32P,the beta particle will travel in the tissue until it either annihilates with an electron or,loses momentum due to viscous electromagnetic forces.,It is possible that the beta (electron or positron),is relativistic, traveling faster than the speed,of light in the tissue. While it is impossible,to travel than the speed of light in a vacuum,(c), the speed of light in tissue is v = c / n,where n is the tissue index of refraction and,n = 1. Cerenkov photons will be generated,by a relativistic charged particle in a dielectric medium such as tissue.

PDF 2 MB
Stem Cell Research and Regenerative Medicine

With the potential to treat a wide range,of disease, from organ damage to,congenital defects, stem cell research,and tissue engineering form the underlying,basis of regenerative medicine. Significant,advances in the science of skin regeneration,for example, have now made it possible to,develop and grow artificial skin grafts in a,lab for treatment of burn victims. Other therapeutic applications include the use of,stem cells to treat and repair central nervous system diseases such as ischemia and,cerebral palsy, cardiovascular diseases, as well as autoimmune diseases including,type I diabetes. However, critical research addressing safety concerns, exploring,therapeutic function, and assessing mechanisms of action must be completed prior,to human adoption. IVIS® technology is being widely used to explore stem cell,research outcomes in preclinical small animal models, which serve as key test pre-cursors to human clinical trials.

PDF 1 MB

Featured Publication Note

Product Note

IVIS Lumina XRMS Series III Product Note

IVIS Lumina XR Series III Integrating Gold Standard Bioluminescence, Fluorescence and X-Ray In Vivo Technologies. The IVIS Lumina XR Series III from PerkinElmer provides an expandable, sensitive imaging system that is easy to use for fluorescent, bioluminescent, radioistopic and X-Ray imaging in vivo. As the leading optical imaging platform for in vivo analysis, IVIS systems include a range of practical accessories developed through experience in research laboratories worldwide.

PDF 2 MB
RAS-4 Rodent Anesthesia System

The Xenogen XGI-8 Gas Anesthesia System is designed to work with the IVIS Imaging System, a technology from Xenogen that allows researchers to use r eal-time in vivo imaging to monitor and record cellular and genetic activity within a living organism.

PDF 562 KB

Software Downloads

Technical Note

Adaptive Fluorescence Background Subtraction

Adaptive Fluorescence Background Subtraction Pre-clinical in vivo imaging technical note for IVIS Imaging Systems. Instrument background occurs when excitation light leaks through the emission filter. This occurs more frequently when the excitation and emission filters are narrowly separated. The ring you see is a result of non specific light reflecting off of the stage at an incident angle and passing through the filter causing what appears as leakage around the edges.

PDF 1 MB
AutoExposure

Auto-exposure technical note for IVIS pre-clinical imaging systems

PDF 1 MB
Background ROI

Subtracting Background ROI from a Sequence

PDF 1 MB
Determine Saturation

Determine Saturation for IVIS imaging systems - technical note

PDF 1 MB
Drawing ROIs

Technical notes for Drawing ROIs for IVIS in vivo imaging systems. The circle, square, free draw, or grid (for well plates) can be used to draw your ROIs. ROI selections,are user-specific and are dependent on the model being analyzed. It is irrelevant which shape that is used for a particular ROI.

PDF 669 KB
High Resolution Images

Acquisition of High Resolution Images. This quick reference guide is for those researchers who wish to perform analysis that requires high resolution including in vitro studies when one may want to discern aspects about cell layers, ex vivo tissue imaging, or imaging of tissue slices. You will not need this resolution in most in vivo studies.

PDF 1 MB
Image Overlay 2D

Not only is it possible to load multiple images as a group, for example multiple days of a longitudinal study, but it is also possible to load multiple images and Overlay them i.e. bioluminescent tumor with fluorescent targeted drug acquired in two separate images.

PDF 472 KB
Loading Groups of Images

For many studies, it may be desirable to open a group of images together, for example, analyzing multiple days of longitudinal study side by side using the same scale.

PDF 751 KB
Subject ROI

Subject ROI using IVIS imaging systems

PDF 2 MB
Working with Image Math

Working with Image Math. Image Math is a rudimentary but effective method for Spectrum and Lumina users to subtract background from images without performing Spectral Unmixing.

PDF 911 KB

Video Article