PerkinElmer
check quantity

FMT 2000 In Vivo Imaging System

The FMT 2000 is a workhorse 3D fluorescence tomographic system with the ability to quantitate up to two fluorophores simultaneously.

Part Number FMT2000
Buy Now

Please enter valid quantity

Please login to add favorites

NULL OR EMPTY CART

You successfully added item(s) to your cart

For research use only. Not for use in diagnostic procedures.

Detail Information

The system comes with two excitation laser channels and is useful for a range of applications.

FMT for Fluoresence Tomography: 3 Steps to Generate Fluoresence Tomographic Data in vivo Quick to learn. Fast to image. Easy to quantify.

STEP 1: FMT Data Generation

  • Transillumination: FMT transillumination of animal using powerful 80 mW lasers
  • Creating Baseline Absorption Profiles: Baseline absorption profiles of each mouse's biological composition are measured by a laser-light raster scan. Paired absorption and fluorescence data maps generated from 10,000 - 100,000 source detector laser projections.
  • FMT laser-driven transillumination generates paired absorption and fluorescence data maps throughout the animal. The anesthetized mouse is comfortably placed in PerkinElmer's portable Animal Imaging Cassette. Imaging sessions are rapid (2-3 minutes per animal), animal handling is simple and the mouse remains stable and immobilized for consistent, repetitive imaging results

 

STEP 2: FMT Normalization

  • Normalized fluorescence measurements generated by processing all paired absorption and fluorescence acquisition data.
  • FMT minimizes the distorting effects of in vivo tissue heterogeneity, taking into account surface boundaries, tissue spectral characteristics and wave-guiding effects to correct and normalize each fluorescent measurement.
  • Data normalized by FMT algorithmic models of photon transport in tissue.
  • Insert the Animal Imaging Cassette into the FMT 2500. Easily position the anesthetized animal in the Imaging Cassette within the heated imaging chamber. Gas anesthesia is maintained.

 

STEP 3: FMT Reconstruction

Whatever your needs, PerkinElmer has a quantitative FMT platform to provide deeper insights to your biological questions. Select the FMT 1500 for quantitative imaging in individual laboratories, in smaller facilities or for single applications. The 4-channel FMT 2500 LX is available for laboratories requiring a broader range of applications and extensive multi-modality capabilities.

  • Fluorescence quantified to the picomole at each point in the subject including deep tissue targets
  • Fluorescence measurements calculated throughout the user-selected regions of Interest (ROI)
  • Data provided in universal formats for analysis (including DICOM), database building, and decision-making
  • Easily create animated movies including dynamic presentation of quantification data for presentation
  • Data and images easily exported for multi-modality image fusion
  • Quantification is performed on all animals at any depth with equal accuracy and without the need for an artificial image atlas for referential quantification.

 

Specifications

Height 89.0 cm
Imaging Modality Optical Imaging
Length 48.0 cm
Optical Imaging Classification Fluorescence Imaging
Portable No
Product Brand Name FMT
Research Areas In Vivo Research
Width 46.0 cm
Resources, Events & More
  • All

Application Note

Gastric Emptying with GastroSense 750

The accurate quantitation of gastric emptying is crucial,for understanding the physiological, pathological and,pharmacological mechanisms underlying gastric motility,both clinically and in animal studies. Current methods,used for determining gastric emptying rates in small animals,are either terminal or involve radioactive tracers, incurring,high financial and time cost. We have developed a novel,near-infrared (NIR) fluorescent imaging agent, GastroSense™ 750, to monitor and quantitate gastric,emptying rates in murine models in vivo, non-invasively, and in real time. The imaging agent is,comprised of an acid-stable NIR fluorophore conjugated to a non-absorbable pharmacokinetic,modifier designed to be formulated in liquid or incorporated into a solid meal. Using female,8 week old BALB/c mice recipients, 0.25 nmol GastroSense 750 was orally gavaged in liquid,formulation (PBS) or fed in egg yolk, an experimental approach designed to detect changes in,gastric emptying. In vivo 3D fluorescent imaging and quantitation using the FMT®

PDF 1 MB
Guide to the Use of the Multispecies Imaging Module (MSIM) for Imaging Rats on the FMT Imaging System

Non-invasive preclinical imaging techniques have become important tools in biomedical research, advancing the researcher’s ability to monitor disease progression and the impact of therapeutic intervention in a variety of disease areas. With the recent advances in NIR tomographic imaging technology it has been possible to demonstrate the capabilities of fluorescence molecular tomographic (FMT®) imaging to detect and quantify fluorescent biomarkers of disease in deep tissuesites of cancer, inflammation, and infectious disease. The development of the Multispecies Imaging Module (MSIM) now allows the power of deep tissue FMT imaging to be applied to preclinical rat research models.,The MSIM allows the researcher to rapidly switch between mouse and rat imaging through the addition or removal of the mouse cassette adapter. With the adapter in place, the standard mouse imaging cassette can be inserted for mouse imaging. Removal of the adapter allows the insertion of a larger imaging cassette suitable for rats or other animals of similar size (i.e. 200-450 g body weight), with gas anesthesia delivered effectively to the animal during imaging.

PDF 1 MB
In Vivo Imaging of Atherosclerosis Disease Using FMT

Current means of measuring disease in preclinical models of atherosclerosis include ex vivo assessment of disease tissues post-mortem and non-invasive imaging primarily of structural and anatomic features of lesions, in vivo. A non-invasive, quantitative means of imaging known biologic profiles associated with atherosclerotic disease, in vivo, would enable a robust additional understanding and analysis of disease progression and therapeutic response in research and drug development. We report the utility of the near infrared (NIR) protease-sensing, ProSense® 750 Fluorescent Pre-clinical Imaging Agent, in combination with the FMT® 2500 Quantitative Pre-clinical Imaging System for the non-invasive quantitative measurement of atherosclerotic disease biology and related response to therapy in apolipoprotein (apo) E-deficient mice in vivo. FMT (Fluorescence Molecular Tomography) imaging measured significant increases in aortic region protease activity with a range of values that were comparable to the range seen in the ex vivo aortic arches assessed by fluorescence reflectance imaging (FRI).

PDF 1 MB
In Vivo Non-Invasive Method to Determine Glomerular Filtration Rate (GFR)

An in vivo non-invasive method to determine glomerular filtration rate (GFR). Glomerular filtration rate (GFR) is the gold standard in kidney function assessment and is used to determine progression of kidney disease and drug-induced kidney toxicity. One of the most accepted ways to assess GFR is by measuring the rate of disappearance of labeled inulin from the blood; as inulin is completely filtered at the kidneys’ glomeruli (but neither secreted nor reabsorbed by the tubules), this rate of disappearance is directly proportional to GFR. We have developed a near infrared (NIR) fluorescent-labeled form of inulin (GFR-Vivo™ 680) in a spectral region providing low background and high tissue penetration (ex/em = 670/685 nm) for in vivo application. Fluorescence molecular tomographic (FMT) imaging of the heart was used to detect and quantify blood levels of GFR-Vivo 680 at multiple time points, providing the necessary data to calculate the clearance rates in individual animals. Following an intravenous bolus of NIR-Inulin in SKH-1E mice, FMT® images were acquired at 1, 5, 15, 30, and 45 minutes post-injection. Clearance rates were calculated using a two-compartment curve fitting, yielding average rates of 270 + 6 mL/min in normal mice. GFR-Vivo 680, in combination with FMT heart imaging, provides a non-invasive fluorescent imaging approach to generate consistent GFR measurements in models of kidney disease, dysfunction, and drug toxicity.

PDF 2 MB
NIR Fluorescent Cell Labeling for In Vivo Cell Tracking (VivoTrack 680)

Fluorescent dyes have been used for many years to label cells for microscopy studies, and a variety of dyes in the visible fluorescence spectrum are available to label different cellular compartments and organelles. Efficient delivery of the fluorophore to the cell without excessively modifying surface proteins or perturbing cell function is the major biotechnological challenge. In addition, researchers have taken on the challenge of in vivo imaging, focusing on near infrared (NIR) dyes that fluoresce in a spectral region better suited for in vivo imaging due to reduced background and higher tissue penetration. Here we introduce VivoTrack™ 680, a novel NIR dye that has a long aliphatic tail to facilitate intercalation into the lipid bilayer of the cell. This agent can label a variety of cells brightly and uniformly without requiring harsh organics such as DMSO or ethanol, chemicals known to affect cell function. The labeled cells retain excellent viability and normal proliferative capacity, and significant signal is retained in dividing cells in vitro for more than 7 days. Many different cell types can be labeled for in vivo transfer or implantation, and in vivo utility is illustrated,by non-invasively tracking fluorescent primary macrophages to sites of inflammation by NIR fluorescent imaging.

PDF 2 MB
Noninvasive In Vivo Quantitation of Asthma Severity Using FMT

Asthma is an inflammatory disease process characterized by reversible airway obstruction and airway hyperresponsiveness. This disease process is driven by activated T lymphocytes and eosinophils that are recruited to the lung upon inhalation of triggering allergens. These cells release inflammatory mediators, activate mast cells and epithelial cells and stimulate mucus secretion, ultimately leading to airway obstruction. The incidence and severity of asthma is increasing worldwide, elevating the need for clinically relevant in vivo animal models that can be used to improve the understanding of asthma biology and the development of effective therapeutics. Here we illustrate the use of PerkinElmer’s FMT® 2500LX Quantitative Pre-clinical Imaging System in combination with ProSense® 680 Fluorescent Pre-clinical Imaging Agent, a near-infrared, protease-activatable agent, for the noninvasive in vivo imaging and quantitation of pulmonary inflammation.

PDF 488 KB

Brochure

FMT Fluorescence Tomography In Vivo Imaging Systems

Complete suite of in vivo fluorescence tomography imaging solutions from PerkinElmer lets you discover more about biological targets, processes and pathways, directly in the living animal.

PDF 1 MB

Poster

A Hybrid Inversion Technique for Extremely Rapid Fluorescence Molecular Tomography Reconstructions

WMIC 2013 poster,Fluorescence Molecular Tomography (FMT) is,commonly used in small animals, most,commonly mice. A significant challenge in,imaging larger anatomies is the computation,time required to perform both the forward,model for light propagation and the matrix,inversion for computing the distribution of,fluorophores in the animal. We present a,technique for reducing the size of the problem,through the use of hybrid computations in real,space and in Fourier space, which results in a,speed-up in computation time by several,orders of magnitude.

PDF 422 KB
A Near-Infrared Fluorescent Transferrin Agent for Quantitative Imaging of Transferrin Receptor Expression in Tumor Xenografts

WMIC 2013 poster,Transferrin (Tf) transports iron to all tissues, particularly those with highly metabolic cells like tumors because of their high demand for iron (for heme synthesis and as cofactors of non–heme enzymes). Given the overexpression of Tf receptors (TfR) on malignant cells, targeting TfR has been a successful approach as a strategy for pharmacological intervention in both cancer diagnosis and therapy, providing a means for selective delivery and rapid receptor-mediated internalization in tumors. While most of the imaging agents targeting TfR have involved the use of radiochemicals, in this study we generated a novel TfR-targeted agent using near infrared fluorophore labeled transferrin, Transferrin-VivoTM 750 (TFV750).

PDF 2 MB
A Technique for Reducing Forward-Model-Induced Artifacts in Fluorescence Molecular Tomography Reconstructions

As with any functional imaging, one of the critical factors in an investigator’s ability to interpret Fluorescence Molecular Tomography (FMT) data is the reliability of the tomographic reconstructions. False negatives (missing signal) and false positives (artifacts) both hamper the accurate interpretation of data. Our study addresses the most prominent false positive artifacts with a reliable way of reducing their effect without a need for a priori assumptions about the concentration of fluorescence in the reconstruction.

PDF 237 KB
A novel NIR dye for in vivo temporal tracking of labeled macrophages to sites of acute inflammation

A novel NIR dye for in vivo temporal tracking of labeled macrophages to sites of acute inflammation

PDF 689 KB
Imaging and quantification of bombesin receptor expression in vivo

Imaging and quantification of bombesin receptor expression in vivo - WMIC 2013 Poster,Bombesin-like peptides, including the mammalian analogs,gastrin-releasing peptide (GRP) and neuromedin B (NMB),function as growth factors in normal and neoplastic tissues.,For example, GRP receptors are found in the,gastrointestinal tract where they mediate hormone release,and epithelial cell growth. These receptors are also,overexpressed in a variety of cancers and have been used,to develop imaging tracers and as targets in radiotherapy.,As a pre-clinical alternative to using ionizing radiation, we,developed a novel near infrared (NIR) fluorescent agent,BombesinRSenseTM 680 (BRS680), designed to target and,quantify bombesin receptors in vivo.

PDF 1 MB
Imaging of Cathepsin K activity in rodent models of bone turnover and soft tissue calcification

Imaging of Cathepsin K activity in rodent models of bone turnover and soft tissue calcification

PDF 966 KB
In Vivo NIR Imaging and Quantification of Glomerular Filtration Rate (GFR) in Mice

WMIC2013 Poster_,The measurement of glomerular filtration rate (GFR) is the,gold standard in kidney function assessment and is used to,determine progression of kidney disease and drug-induced,kidney toxicity. This is often assessed indirectly in,preclinical animal models either by surrogate markers, like,plasma creatinine or blood urea nitrogen. GFR is best,quantified functionally by assessing plasma clearance rates,of labeled inulin or labeled inulin analogs, but to-date this,requires blood sampling - a fairly labor intensive process.,In an effort to eliminate this procedure, we developed a,near infrared (NIR) fluorescent-labeled version of inulin,(GFR-Vivo 680 [GFR680]; ex/em = 670/685 nm) in a,spectral wavelength that offers high tissue penetration and,low background suitable for in vivo imaging.

PDF 2 MB
In vivo imaging and quantification of bacterial infection using a new red fluorescently labeled agent

Bacterial infection is a serious and costly clinical issue, so there is significant need for preclinical tools for assessing infection and therapeutic intervention. Rapid and non-invasive imaging technologies and targeted imaging agents would prove invaluable in diagnosing and managing bacterial infections. To this end, we developed a unique type of fluorescent agent that can quickly target bacteria, providing a fluorescent method to quantify bacterial load during infection as early as one hour post-injection. A red cationic agent (BacteriSenseTM 645) targeting the negative charge at the surface of bacteria was developed

PDF 1 MB
Quantitative assessment of folate receptor expression by FMT imaging with a NIR fluorescent folate agent

Folic acid (vitamin B9) is an essential nutrient required by eukaryotic cells for survival that is acquired and internalized via folate receptors (FR) on the cell surface. In particular, it is the highly metabolic cells that upregulate FR, and many different human tumor cells, including ovarian, breast, cervical, renal, colorectal and nasopharyngeal cancer cells show significant upregulation as compared to normal tissues. As such, folic acid has been successfully exploited as a cancer specific targeting moiety for the efficient delivery of chemotherapeutic agents, drug carriers, photosensitizers and diagnostic reporters. Critical to the success of such agents is the determination of the level of FR expression for a given tumor, since weak FR-expressing cancers will not respond well to folate-targeted therapies. There is therefore a need for specific and quantitative imaging agents

PDF 1018 KB
Reduction of excitation source coupling artifacts in diffuse fluorescence tomography reconstructions

Ill-posedness of diffuse fluorescence tomography,inverse problems often leads to artifacts,localized near the points where excitation light,is injected into the subject. These artifacts are,especially problematic in systems with high,levels of non-specific dye, as is often,encountered after intravenous injection of,targeting agents in small animal models.,Earlier efforts to remove these artifacts have,utilized a priori structural information to guide,the reconstruction on the location of inclusions.,In this work for fluorescence tomography, an,algorithm to reduce excitation source coupling,artifacts near the air-tissue boundary using a,least-squares method in the absence of userimposed,expectation is described. This method,is based on a technique developed by Kempner,Ripoll and Yared (Poster P422, this conference),for the algebraic reconstruction technique.

PDF 749 KB
Targeted in vivo imaging of tumor vasculature using a near infra-red labeled tomato lectin agent

Tumor neo-vasculature, characterized by the development of abnormal, leaky and tortuous blood vessels, represents a key target for cancer imaging and therapy. Among the various recognized tools for measuring microvessel density is tomato (Lycopersicon esculentum) lectin, a single polypeptide glycoprotein that binds to sugar-containing proteins present on the endothelium. The aim of this study was to develop a near infra-red tomato lectin imaging agent to non-invasively assess tumor vasculature in vivo. Conjugation of the near infra-red fluorophore VivoTag 680XL (epsilon=210,000/M/cm; abs/em max 665/688 nm) to tomato lectin was carried out by addition of the fluorophore in a DMSO solution to lectin in aqueous sodium bicarbonate. Yields of greater than 95% were achieved, based on absorbance, with a typical loading of 2 dyes per lectin. The resulting agent, TLectinSenseTM 680 (TL680), preferentially labeled primary human umbilical vein endothelial cells. Specificity of the binding was validated by control experiments using free dye and competitive blockade with excess unlabeled tomato lectin. In vivo, non-invasive, real-time imaging and quantification of tumor neo-vasculature was performed in two models: matrigel plugs containing bFGF, VEGF and heparin injected into the flank of SKH-1 mice and nude mice bearing Lewis Lung Carcinoma tumors. Using Fluorescence Molecular Tomography (FMT®) 6 hours after TL680 (4 nmoles) intravenous injection, tumor endothelium-associated fluorescence was detected in matrigel plugs and this...

PDF 1007 KB

Product Note

RAS-4 Rodent Anesthesia System

The Xenogen XGI-8 Gas Anesthesia System is designed to work with the IVIS Imaging System, a technology from Xenogen that allows researchers to use r eal-time in vivo imaging to monitor and record cellular and genetic activity within a living organism.

PDF 562 KB

Software Downloads

Video Article