PerkinElmer

Differential Scanning Calorimetry (DSC)

OF

To see more than you've ever seen from Differential Scanning Calorimetry (DSC), turn to PerkinElmer, where DSC was invented. Our comprehensive line of high-performance DSC applications, instruments and services – combined with our expertise in materials characterization -- helps you push the envelope on your research, offering deeper insights and the best user experience available.

Whether you are performing QA/QC, studying processes in polymers or pharmaceuticals, or developing the cures of tomorrow, our DSC solutions will open your eyes to a world of exciting new opportunities.

Products & Services (4)
Filters:

1-4 of 4 Products & Services

Sort by

  • DSC 4000 System, 100-240V/50-60Hz

    The DSC 4000 offers dependable performance and quality results. This single-furnace, heat flux DSC is designed to run all your routine applications and includes an easy-to-load vertical furnace that is resistant to oxygen and chemical corrosion.
  • DSC 8000

    The DSC 8000, double-furnace, power compensation DSC provides greater sensitivity and accuracy as well as faster and more reliable results then you ever thought possible.
  • LAB SYS-DSC 8500

    The DSC 8500 is a double-furnace DSC, featuring our second-generation HyperDSC technology. Now you can gain unlimited insight into the structure, properties and performance of your materials.
  • DSC6000

    DSC 6000

    The DSC 6000 gives you all the advantages of the DSC 4000 and more. Designed for research application, it comes with Modulated Temperature DSC (MT-DSC) technology for easier data interpretation and new capabilities for product development.
Business Insights (7)
Filters:

1-7 of 7 Business Insights

Sort by

  • Brochure

    The Power of the Sun, Solar Energy Development Solutions

    As the demand for solar power continues to grow, there needs to be a clear focus on different key issues in the life cycle of a solar cell. These issues are: efficiency, durability and cost. Coupling PerkinElmer’s application knowledge and experience together with our product portfolio, we can help manufacturers overcome these obstacles. At PerkinElmer, we’re taking action to ensure the quality of our environment.

  • Application Note

    HyperDSC for High Throughput Formulation Development

    The concept of High-Throughput Design has gained more and more interest as a way to increase profitability and to decrease research costs. One technique that can increase the ability of a laboratory to evaluate formulations is HyperDSC™ or High Ramping Rate DSC. HyperDSC is the ability to quantitatively measure small samples at extreme heating and cooling rates, typically 100-500 °C/min.

  • Application Note

    Curing Determination of EVA for Solar Panel Application

    This study shows that DSC can be used to study the curing degree of the EVA resin by measuring the residual curing enthalpy. The data show that the residual curing enthalpy can be correlated to the curing time in a linear way. The DSC test is quick and easy.

  • Application Note

    Improved HyperDSC Method to Determine Specific Heat Capacity of Nanocomposites and Probe for High-Temperature Devitrification

    Where ΔCp and ΔCp pure are the changes in specific heat at the glass transition temperature, Tg, for the composite, and for the unfilled polymer, respectively. This work suggests an alternative method for determining Cp that takes advantage of fast heating and cooling rates to obtain quantitative Cp in the upper temperature region without having to dwell in that high temperature region to establish an upper isothermal.

  • Application Note

    High Resolution Characterization of Pharmaceutical Polymorphs Using Power Compensation DSC

    Many pharmaceutical materials exhibit polymorphism, which means that, depending upon the given processing conditions, the crystalline form may exist in two or more states. The crystalline states or forms exhibit different levels of thermodynamic stabilities and an unstable form can melt at a temperature significantly less than the melting point of the thermodynamically stable form. Depending upon the conditions used to generate the crystalline form(s), the drug may exhibit one or more unstable, polymorphic crystalline states.

  • Application Note

    Study Rigid Amorphous Fraction in Polymer Nano-Composites by StepScan and HyperDSC

    Heat capacity measurement has been performed in order to detect a possible second Tg on nanocomposites of polymethyl methacrylate (PMMA) with silicon oxide nanoparticles of different shape. StepScan™ DSC was used for determination of precise heat capacity and HyperDSC® to prevent degradation and identify devitrification of the RAF at elevated temperatures.

  • Case Study

    Renault F1® Team - Stronger and Safer with PerkinElmer Analysis

    PerkinElmer has been helping Renault F1 Team's Enstone Technical Center with their analytical needs for nearly 30 years. PerkinElmer began by outfitting the team’s testing lab with the analytical instrumentation needed to conduct materials testing. Today, a dedicated PerkinElmer scientific laboratory operates within the team’s Enstone facility where the latest thermal analysis, infrared spectroscopy, and imaging technologies are being utilized for proactive monitoring, issue prevention, and performance enhancement of the team’s single seater. This case study shows you how we offer analytical expertise in helping Renault F1 Team master the thermal stability challenge.