Filters :
1-12 of 110 Business Insights
Sort by
The OilExpress 4 system adapts to your laboratory’s needs, from dozens to thousands of samples per day. Its modular design makes it possible to scale up your sample throughput or separately utilize the oil dilution capabilities in busy laboratories that are using ICP analysis. The system minimizes your operational costs by reducing instrument downtime, increasing throughput to reduce cost per sample, and offering significant savings from decreased solvent waste.
In today’s budget-constrained, yet highly competitive laboratory environments, the samples you’re being asked to analyze - whether food, pharmaceutical, petrochemical, or environmental - are increasingly difficult. But for some labs, having a dedicated GC for every application isn’t an option. For them, a GC that can do it all isn’t just a nice-to have, it’s a necessity.
As the demand for solar power continues to grow, there needs to be a clear focus on different key issues in the life cycle of a solar cell. These issues are: efficiency, durability and cost. Coupling PerkinElmer’s application knowledge and experience together with our product portfolio, we can help manufacturers overcome these obstacles. At PerkinElmer, we’re taking action to ensure the quality of our environment.
With throughput demands continually increasing, and an ongoing need for more detailed sample information, PerkinElmer systems are setting the standard for speed and productivity in all areas of lubricants analysis: 1.) Wear metals analysis, 2.) Oil condition monitoring and 3.) Confirmatory testing. Modular and scalable, each solution can adapt as your needs change—no matter what the size of your organization or the demands of your application
For laboratories analyzing everything from air quality to flavors and fragrances, thermal desorption offers a faster, easier, more cost-efficient way to prepare samples for GC or GC/MS analysis. Ideal for the trace-level measurement of volatile organic compounds (VOCs)—as well as most semi-volatile chemicals—thermal desorption lets you avoid time-consuming, manual, solvent-based sample preparation in favor of a simple, streamlined, automated approach. It also delivers the added benefits of superior throughput and enhanced sensitivity.
Designed specifically to meet the requirements of the Caterpillar® S.O.SSM program, the JOAP program, and the new ASTM® Methods D7412, D7414, D7415, D7418, Spectrum™ OilExpress is the fastest, most cost-effective Oil Condition Monitoring (OCM) solution for busy test laboratories. OilExpress also uses less than half the solvent required by competing systems, dramatically reducing day-to-day operating costs and making laboratories more competitive.
Although it was built for portability and speed, the low thermal mass (LTM) capillary GC provides equivalent chromatographic resolution and performance to a benchtop system. The miniature size is achieved by replacing a conventional convectively-heated column oven with a low thermal mass (LTM) column bundle with direct-contact electrical resistive heating. LTM GC uses a small diameter, metal capillary GC column, which is bundled with resistive heating and temperature-sensing wires that are braided Superior technology • Small diameter LTM capillary GC for high speed, high resolution separation of chemical analytes • Rapid temperature programming delivers analysis times of under three min. • Sensitive and selective mass-based detection of a wide range of chemicals • Easy to operate with a color touch-screen display and simple navigation buttons Figure 1. The Torion T-9 Low Thermal Mass Capillary GC is fast and operates reliably. Injection Port with Removable Liner LTM Capillary Column Bundle Cooling Fan Electronic Pressure Control GC Electronic Board together with insulator strands. This design provides for greater heating and cooling speeds and very low power consumption
The analysis of C2 to C12 volatile organic ozone-precursor compounds can present a serious technical challenge to the analytical chemist. Low concentrations in the atmosphere coupled with the need to monitor frequently to assess diurnal variations means that a preconcentration step of the sample before analysis by thermal desorption is required. While the samples can be collected in the field and returned to the laboratory, remote, field-based analysis is desired which allows reduced data turnaround time, minimizes sample collection hardware and permits the presence or absence of VOCs to be correlated with meteorological data. In the field, low-molecular-weight C2 VOCs can be trapped on solid adsorbents if those adsorbents are cryogenically cooled.
Infrared (IR) and near-infrared (NIR) spectroscopy are fast, easy-to-use techniques with a history of being used for food applications such as those for measuring protein, moisture, and fat content. Food fraud and adulteration has become of particular concern to the industry over the past few years following reports of incidents in the media, with herbs and spices identified as one of the key problem areas.
This paper explores the numerous challenges materials scientists and engineers face, from the time it takes to bring new materials to market to the difficulties delivering suitable formulations and testing against specified criteria, and how those can be resolved.
There is a growing body of evidence showing that there are significant differences between some nanomaterials and their non-nanoscale counterparts. What those differences portend raises many new questions about their potential to cause harm to human health and the environment.
The analysis of soils for elemental contents presents challenges during the sample preparation step. A common method for preparing a soil sample for inorganic elemental analysis involves digesting the soil sample in an acid that is heated to near-boiling to extract the elements for analysis. When using open vessels in heating blocks, this extraction method typically takes four hours or more to complete. The sample must then be centrifuged or filtered to remove solid particles prior to analysis. The use of a microwave digestion system can speed this up significantly by completing the acid digestion in less than 50 minutes.
Filters :
1-12 of 103 Products & Services
Sort by
The method-ready In-Service Lubricants Analysis System provides everything you need to analyze samples to industry standards, following ASTM and JOAP methodology. Remarkably easy to use, you can be confident in generating consistent quality spectra.
Rapid testing of your polymer material is refreshingly easy with this out-of-the-box polymer analysis system. A combination of ready-made protocols, a materials library, and the easy-to-use system ensures swift identification of your materials.
Choose the Frontier™ range of Fourier Transform IR spectrometers for superior spectroscopic performance in demanding applications. Powerful and adaptable, the Frontier meets all your current analysis needs and can be expanded as your research goals evolve. An exceptional signal-to-noise ratio and photometric performance assures optimal spectral quality to ensure best-in-class sensitivity. This configurable platform provides dependable and consistent operation through years of service.